skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Wenyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The estimation of large precision matrices is crucial in modern multivariate analysis. Traditional sparsity assumptions, while useful, often fall short of accurately capturing the dependencies among features. This article addresses this limitation by focusing on precision matrix estimation for multivariate data characterized by a flexible yet unknown group structure. We introduce a novel approach that begins with the detection of this unknown group structure, clustering features within the low-dimensional space defined by the leading eigenvectors of the sample covariance matrix. Following this, we employ group-wise multivariate response linear regressions, guided by the identified group memberships, to estimate the precision matrix. We rigorously establish the theoretical foundations of our proposed method for both group detection and precision matrix estimation. The superior numerical performance of our approach is demonstrated through comprehensive simulation experiments and a comparative analysis with established methods in the field. Additionally, we apply our method to a real breast cancer dataset, showcasing its practical utility and effectiveness. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work. 
    more » « less
    Free, publicly-accessible full text available February 10, 2026